SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(650.6 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-97181-1

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

AI and the Potential to Create Digital Twins to Transform Military Logistics

[Zeitschriftenartikel]

Tuli, Munish

Abstract

Efficient and reliable military logistics are essential to the success of military operations. When effectively integrated into logistics planning and decision-making, Artificial Intelligence (AI) can simplify complex logistics operations. Digital twins are digital representations of physical object... mehr

Efficient and reliable military logistics are essential to the success of military operations. When effectively integrated into logistics planning and decision-making, Artificial Intelligence (AI) can simplify complex logistics operations. Digital twins are digital representations of physical objects, systems, or processes. When powered by AI, digital twins have the potential to make military logistics smarter, more efficient, and cost-effective. It is proposed that all military equipment (embedded with sensors) and military depots in the Indian Army should have their AI digital twins created to facilitate predictive maintenance and AI-driven demand forecasting respectively. An attempt has been made to explore and validate the proposed concepts through two prototype machine-learning projects. The article further delves into the implementation aspects of AI digital twin-based predictive maintenance and demand forecasting followed by key recommendations for adoption in the Indian Army.... weniger

Thesaurusschlagwörter
Militär; Logistik; Kriegsführung; künstliche Intelligenz; Indien

Klassifikation
Friedens- und Konfliktforschung, Sicherheitspolitik

Freie Schlagwörter
Supply Chain Management

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
S. 141-157

Zeitschriftentitel
CLAWS Journal, 16 (2023) 2

ISSN
2319-5177

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.