SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/up.8350

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Urban Microclimate Impact on Vertical Building-Integrated Photovoltaic Panels

[journal article]

Spett, Max
Lau, Kevin
Rizzo, Agatino

Abstract

The ongoing climate crisis and turbulence on the world stage has highlighted the need for sustainability and resilience in the development and maintenance of urban areas regarding climate comfort and energy access. Local production of green energy increases both the sustainability and resilience of ... view more

The ongoing climate crisis and turbulence on the world stage has highlighted the need for sustainability and resilience in the development and maintenance of urban areas regarding climate comfort and energy access. Local production of green energy increases both the sustainability and resilience of an area. Traditionally, photovoltaic (PV) panels are deployed wherever the amount of sunlight is highest but lowering costs for PV panels makes them cost-effective even in colder climates. Within the broader umbrella of positive energy districts, façade mounted building-integrated PV panels in urban areas additionally present unique opportunities and challenges, as factors such as wind, solar irradiance, or nearby obstructions can have either a positive or negative effect on the performance of the PV panels. In this article, we aimed to answer the question: What factors inform the optimization of vertical PV panels? To answer this, we developed a method for the optimization of placement of PV panels. By building upon readily available weather data, local panel conditions were examined, and field-driven aggregation algorithm used to guide panel placement. Performance of the resulting panel configurations were then compared to a baseline case. Results indicate that our developed method helped mitigate negative impacts of the aforementioned factors, and often improved performance over baseline.... view less

Keywords
climate change; energy production; sustainability; renewable energy

Classification
Area Development Planning, Regional Research

Free Keywords
building envelope; building-integrated photovoltaic panels; field-driven aggregation; form finding; positive energy districts

Document language
English

Publication Year
2024

Journal
Urban Planning, 9 (2024)

Issue topic
Planning and Managing Climate and Energy Transitions in Ordinary Cities

ISSN
2183-7635

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.