SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.106-33

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Design and Development of a Cutting-Edge Machine Learning-Driven Virtual Learning Platform to Revolutionize Online Education and Improve Student Learning during COVID-19

[Zeitschriftenartikel]

Ejiofor, Mavis Malachi
Akintayo, Taiwo Abdulahi
Godwin, Agbonze Nosa

Abstract

Instructors in virtual classes are facing previously unheard-of difficulties in sustaining student engagement and attendance as the COVID-19 pandemic continues to alter the education landscape. To solve this pressing problem, we have created facial analysis technology that enables teachers to track ... mehr

Instructors in virtual classes are facing previously unheard-of difficulties in sustaining student engagement and attendance as the COVID-19 pandemic continues to alter the education landscape. To solve this pressing problem, we have created facial analysis technology that enables teachers to track students' engagement and attention in real-time.Our user-friendly platform uses cutting-edge face detection technology and machine learning to give teachers a visual dashboard that shows disengaged students as red boxes and engaged students as green boxes. This cutting-edge tool helps teachers determine which students need more encouragement or support, guaranteeing individualized attention and better learning results.Our tool provides instructors with features, such as automated attendance records and early departure detection, that go beyond simple attendance tracking and help them optimize online class management. Our solution seeks to humanize online learning by utilizing facial analysis to provide students with a more engaging and productive learning environment.... weniger

Thesaurusschlagwörter
Lernumgebung; computerunterstütztes Lernen

Klassifikation
Unterricht, Didaktik

Freie Schlagwörter
Facial analysis; Python; Machine learning; student engagement; instructor support; virtual classroom; COVID-19

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 8001-8005

Zeitschriftentitel
Path of Science, 10 (2024) 7

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.