SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/mac.7851

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Audio-as-Data Tools: Replicating Computational Data Processing

[Zeitschriftenartikel]

Lukito, Josephine
Greenfield, Jason
Yang, Yunkang
Dahlke, Ross
Brown, Megan A.
Lewis, Rebecca
Chen, Bin

Abstract

The rise of audio-as-data in social science research accentuates a fundamental challenge: establishing reproducible and reliable methodologies to guide this emerging area of study. In this study, we focus on the reproducibility of audio-as-data preparation methods in computational communication rese... mehr

The rise of audio-as-data in social science research accentuates a fundamental challenge: establishing reproducible and reliable methodologies to guide this emerging area of study. In this study, we focus on the reproducibility of audio-as-data preparation methods in computational communication research and evaluate the accuracy of popular audio-as-data tools. We analyze automated transcription and computational phonology tools applied to 200 episodes of conservative talk shows hosted by Rush Limbaugh and Alex Jones. Our findings reveal that the tools we tested are highly accurate. However, despite different transcription and audio signal processing tools yield similar results, subtle yet significant variations could impact the findings’ reproducibility. Specifically, we find that discrepancies in automated transcriptions and auditory features such as pitch and intensity underscore the need for meticulous reproduction of data preparation procedures. These insights into the variability introduced by different tools stress the importance of detailed methodological reporting and consistent processing techniques to ensure the replicability of research outcomes. Our study contributes to the broader discourse on replicability and reproducibility by highlighting the nuances of audio data preparation and advocating for more transparent and standardized practices in this area.... weniger

Thesaurusschlagwörter
Datenverarbeitung; Methode

Klassifikation
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Kommunikationswissenschaften
Rundfunk, Telekommunikation

Freie Schlagwörter
audio-as-data; computational methods; conservative talk shows; reproduction; talk radio

Sprache Dokument
Englisch

Publikationsjahr
2024

Zeitschriftentitel
Media and Communication, 12 (2024)

Heftthema
Reproducibility and Replicability in Communication Research

ISSN
2183-2439

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.