SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.104-5

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

User Behavior Analysis Using Web-based Machine Learning Features: New Solutions for IT Business

[Zeitschriftenartikel]

Mysiuk, Roman
Kononenko, Oleksii
Svystovych, Andriy
Ozhyhov, Oleksii
Osadets, Nazar
Kuchmak, Yuriy
Pohrebniak, Andrii
Honsor, Yuriy

Abstract

The development of information technologies in IT business increases the interest in the execution of machine learning models directly on the client browser, reduces the load on the server and the number of levels of access to it. At the same time, there are some features that have advantages and di... mehr

The development of information technologies in IT business increases the interest in the execution of machine learning models directly on the client browser, reduces the load on the server and the number of levels of access to it. At the same time, there are some features that have advantages and disadvantages, which are associated with a smaller amount of information transmitted over the network, limited power of client devices, and others. Among modern client-side tools with machine learning capabilities, Tensorflow.js is suitable, which can be used to analyze user behavior in web applications for classification and clustering models based on their behavioral patterns, predict future user behavior trends, detect unusual or suspicious user actions, recommendation models based on their previous behavior. The article analyzes the features of implementation, the limitations associated with the use specifically for the behavior of users in social networks. The model was formed on the basis of data from news posts on social networks Instagram and Facebook with the following parameters of user activity as the number of likes, comments and shares according to the text of the post. These aspects are a significant addition to the tools that can be applied within the set of economic, technical and other means for IT business development. Taking this into account, in the future it is advisable to study the formation and development of the innovation management system in e-business.... weniger

Thesaurusschlagwörter
soziales Netzwerk; Analyse; Daten; Datenverarbeitung; Informationstechnologie

Klassifikation
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften

Freie Schlagwörter
business; IT business; machine learning; tensorflow; user behaviour analysis; data analysis; е-business development

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 1001-1007

Zeitschriftentitel
Path of Science, 10 (2024) 5

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.