SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/18681034231226393

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

An ambitious artificial intelligence policy in a decentralised governance system: Evidence from Indonesia

[Zeitschriftenartikel]

Wadipalapa, Rendy Pahrun
Katharina, Riris
Nainggolan, Poltak Partogi
Aminah, Sitti
Apriani, Tini
Ma'rifah, Diana
Anisah, Azmi Listya

Abstract

This study investigates Indonesia’s ambitious artificial intelligence (AI) policy within the context of its decentralised governance structure. Through in-depth case studies in Jakarta, Central Java, and East Java, we analyse emerging AI-based policy responses and their challenges in a rapidly evolv... mehr

This study investigates Indonesia’s ambitious artificial intelligence (AI) policy within the context of its decentralised governance structure. Through in-depth case studies in Jakarta, Central Java, and East Java, we analyse emerging AI-based policy responses and their challenges in a rapidly evolving technological landscape. Drawing from elite interviews conducted with central and local government officials and documentary research, this study offers rare insights into the local perspective on the struggle to accommodate the central government's ambitious plan with limited resources. This article finds that the divergence in the views and visions of AI between central and local governments has complicated the formulation and implementation of AI-based policies. Central authorities wield a dominant role, evident through regulatory mandates and a centralised decision-making approach that can potentially constrain local autonomy. This power asymmetry, coupled with the lack of specific AI-focused regulations, challenges local governments’ capacity to independently design and manage AI initiatives aligned with their unique contexts. Interestingly, instead of showing their resistance towards the ambitious national plan, local leaders have embraced AI policies, positioning them as innovative tools to enhance popularity in the lead-up to the 2024 general election.... weniger

Thesaurusschlagwörter
Indonesien; Verwaltung; Dezentralisation; Governance; Technologiepolitik; künstliche Intelligenz; technische Entwicklung; Electronic Government; Südostasien

Klassifikation
spezielle Ressortpolitik
Verwaltungswissenschaft

Freie Schlagwörter
Kommunale Regierung/Verwaltung; Verhältnis Zentralregierung - Region

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 65-93

Zeitschriftentitel
Journal of Current Southeast Asian Affairs, 43 (2024) 1

ISSN
1868-4882

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.