SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1525/collabra.87615

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A Brief Note on the Standard Error of the Pearson Correlation

[journal article]

Gnambs, Timo

Abstract

The product-moment correlation is a central statistic in psychological research including meta-analysis. Unfortunately, it has a rather complex sampling distribution which leads to sample correlations that are biased indicators of the respective population correlations. Moreover, there seems to be s... view more

The product-moment correlation is a central statistic in psychological research including meta-analysis. Unfortunately, it has a rather complex sampling distribution which leads to sample correlations that are biased indicators of the respective population correlations. Moreover, there seems to be some uncertainty on how to properly calculate the standard error of these correlations. Because no simple analytical solution exists, several approximations have been previously introduced. This note aims to briefly summarize 10 different ways to calculate the standard error of the Pearson correlation. Moreover, a simulation study on the accuracy of these estimators compared their relative percentage biases for different population correlations and sample sizes. The results showed that all estimators were largely unbiased for sample sizes of at least 40. For smaller samples, a simple approximation by Bonett (2008) led to the least biased results. Based on these results, it is recommended to use the expression (1-r²) / √N-3 for the calculation of the standard error of the Pearson correlation.... view less

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
correlation; sampling distribution; standard error; Pearson correlation

Document language
English

Publication Year
2023

Journal
Collabra: Psychology, 9 (2023) 1

ISSN
2474-7394

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0

FundingThe publication was supported by the Leibniz Association's Open Access Publishing Fund for articles in open access journals.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.