SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1371/journal.pone.0288711

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Studying item-effect variables and their correlation patterns with multi-construct multi-state models

[Zeitschriftenartikel]

Erhardt, Tina H.
Gnambs, Timo
Sengewald, Marie-Ann

Abstract

Method effects on the item level can be modeled as latent difference variables in longitudinal data. These item-effect variables represent interindividual differences associated with responses to a specific item when assessing a common construct with multi-item scales. In latent variable analyses, t... mehr

Method effects on the item level can be modeled as latent difference variables in longitudinal data. These item-effect variables represent interindividual differences associated with responses to a specific item when assessing a common construct with multi-item scales. In latent variable analyses, their inclusion substantially improves model fits in comparison to classical unidimensional measurement models. More importantly, covariations between different item-effect variables and with other constructs can provide valuable insights, for example, into the structure of the studied instrument or the response process. Therefore, we introduce a multi-construct multi-state model with item-effect variables for systematic investigations of these correlation patterns within and between constructs. The implementation of this model is demonstrated using a sample of N = 2,529 Dutch respondents that provided measures of life satisfaction and positive affect at five measurement occasions. Our results confirm non-negligible item effects in two ostensibly unidimensional scales, indicating the importance of modeling interindividual differences on the item level. The correlation pattern between constructs indicated rather specific effects for individual items and no common causes, but the correlations within a construct align with the item content and support a substantive meaning. These analyses exemplify how multi-construct multi-state models allow the systematic examination of item effects to improve substantive and psychometric research.... weniger

Thesaurusschlagwörter
Umfrageforschung; Datengewinnung; Modell; Messung; Lebenszufriedenheit; Affektivität; Psychometrie

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Dutch Longitudinal Internet Studies for the Social Sciences (LISS) panel

Sprache Dokument
Englisch

Publikationsjahr
2023

Zeitschriftentitel
PLOS ONE, 18 (2023) 8

ISSN
1932-6203

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0

FörderungDie Publikation wurde durch den Publikationsfonds der Leibniz-Gemeinschaft für Artikel in Open-Access-Zeitschriften gefördert.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.