SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18335/region.v11i1.491

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The influence of underlying conditions of countries on the COVID-19 lethality rate

[Zeitschriftenartikel]

Guevara Rosero, Grace Carolina
Illescas Navarrete, Eymy Coralia

Abstract

The management of the COVID-19 pandemic not only depends on the stringency measures established by governments but also and more importantly on the underlying capacity of territories in economic and health and sanitary infrastructure. This study aims to identify how the underlying conditions of coun... mehr

The management of the COVID-19 pandemic not only depends on the stringency measures established by governments but also and more importantly on the underlying capacity of territories in economic and health and sanitary infrastructure. This study aims to identify how the underlying conditions of countries influence on their level of COVID-19 lethality rate. To do so, a classification of countries is first conducted by the means of the k-means partitioning method, using COVID-19-related variables such as the lethality rate, the contagion growth rate and the number of days with respect to China. Based on the resulting groups of countries of the first stage, Tobit and Ordinary Least Squares regressions are estimated to determine the effect of the underlying characteristics of countries on their COVID-19 lethality rate. Risks factors which increase the lethality rate in countries are the contagion growth rate, the trade flow with China, the age composition of the population and, to a lesser extent, the population density. Factors that help to reduce the lethality rate are the government effectiveness, the health infrastructure (hospital beds) and, to a lesser extent, the economic growth rate.... weniger

Thesaurusschlagwörter
Krankheit; Sterblichkeit; demographische Faktoren; regionale Faktoren; Infrastruktur; Gesundheitswesen; internationaler Vergleich

Klassifikation
Gesundheitspolitik

Freie Schlagwörter
COVID-19; underlying conditions; clustering analysis; Tobit; OLS

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 27-53

Zeitschriftentitel
Region: the journal of ERSA, 11 (2024) 1

ISSN
2409-5370

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.