SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.14512/tatup.33.1.48

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Artificial intelligence in melanoma diagnosis: Three scenarios, shifts in competencies, need for regulation, and reconciling dissent between humans and AI

Künstliche Intelligenz in der Melanom-Diagnose: Drei Szenarien, Kompetenzverschiebungen, Regulierungsbedarf und Umgang mit Dissens zwischen Mensch und KI
[Zeitschriftenartikel]

Zoellick, Jan C.
Drexler, Hans
Drexler, Konstantin

Abstract

Tools based on machine learning (so-called artificial intelligence, AI) are increasingly being developed to diagnose malignant melanoma in dermatology. This contribution discusses (1) three scenarios for the use of AI in different medical settings, (2) shifts in competencies from dermatologists to n... mehr

Tools based on machine learning (so-called artificial intelligence, AI) are increasingly being developed to diagnose malignant melanoma in dermatology. This contribution discusses (1) three scenarios for the use of AI in different medical settings, (2) shifts in competencies from dermatologists to non-specialists and empowered patients, (3) regulatory frameworks to ensure safety and effectiveness and their consequences for AI tools, and (4) cognitive dissonance and potential delegation of human decision-making to AI. We conclude that AI systems should not replace human medical expertise but play a supporting role. We identify needs for regulation and provide recommendations for action to help all (human) actors navigate safely through the choppy waters of this emerging market. Potential dilemmas arise when AI tools provide diagnoses that conflict with human medical expertise. Reconciling these conflicts will be a major challenge.... weniger


Für die Diagnose von malignen Melanomen in der Dermatologie werden zunehmend Instrumente entwickelt, die auf maschinellem Lernen (sogenannter künstlicher Intelligenz, KI) basieren. Dieser Beitrag diskutiert (1) drei Szenarien für den Einsatz von KI in verschiedenen medizinischen Bereichen, (2) Kompe... mehr

Für die Diagnose von malignen Melanomen in der Dermatologie werden zunehmend Instrumente entwickelt, die auf maschinellem Lernen (sogenannter künstlicher Intelligenz, KI) basieren. Dieser Beitrag diskutiert (1) drei Szenarien für den Einsatz von KI in verschiedenen medizinischen Bereichen, (2) Kompetenzverschiebungen von Dermatolog:innen zu Nicht-Spezialist:innen und mündigen Patient:innen, (3) regulatorische Rahmenbedingungen zur Gewährleistung von Wirksamkeit und Unbedenklichkeit und ihre Folgen für KI-Tools sowie (4) kognitive Dissonanz und potenzielle Delegation menschlicher Entscheidungen an KI. Wir kommen zu dem Schluss, dass KI-Systeme menschliche medizinische Expertise nicht ersetzen, sondern eine unterstützende Rolle spielen sollten. Wir zeigen Regulierungsbedarf auf und geben Handlungsempfehlungen, um alle (menschlichen) Akteur:innen dabei zu unterstützen, sicher durch die unruhigen Gewässer dieses neuen Marktes zu navigieren. Potenzielle Dilemmata entstehen, wenn KI-Tools Diagnosen liefern, die im Widerspruch zur menschlichen medizinischen Expertise stehen. Diese Konflikte zu lösen, wird eine große Herausforderung sein.... weniger

Thesaurusschlagwörter
Krebs; Diagnose; künstliche Intelligenz; Arzt-Patient-Beziehung; Diagnostik; Medizinethik

Klassifikation
Technikfolgenabschätzung
Medizinsoziologie

Freie Schlagwörter
diagnostic accuracy; melanoma

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 48-54

Zeitschriftentitel
TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis / Journal for Technology Assessment in Theory and Practice, 33 (2024) 1

Heftthema
AI for decision support: What are possible futures, social impacts, regulatory options, ethical conundrums and agency constellations? / KI zur Entscheidungsunterstützung: Was sind mögliche Zukünfte, soziale Auswirkungen, regulatorische Optionen, ethische Fragen und Akteur*innenkonstellationen?

ISSN
2567-8833

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.