SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(1.122Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-93052-8

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Sparser Ordinal Regression Models Based on Parametric and Additive Location-Shift Approaches

[journal article]

Tutz, Gerhard
Berger, Moritz

Abstract

The potential of location-shift models to find adequate models between the proportional odds model and the non-proportional odds model is investigated. It is demonstrated that these models are very useful in ordinal modelling. While proportional odds models are often too simple, non-proportional odd... view more

The potential of location-shift models to find adequate models between the proportional odds model and the non-proportional odds model is investigated. It is demonstrated that these models are very useful in ordinal modelling. While proportional odds models are often too simple, non-proportional odds models are typically unnecessary complicated and seem widely dispensable. In addition, the class of location-shift models is extended to allow for smooth effects. The additive location-shift model contains two functions for each explanatory variable, one for the location and one for dispersion. It is much sparser than hard-to-handle additive models with category-specific covariate functions but more flexible than common vector generalised additive models. An R package is provided that is able to fit parametric and additive location-shift models.... view less

Keywords
regression; model; statistics

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
adjacent categories model; cumulative model; dispersion; location-shift model; ordinal regression; proportional odds model; Vorwahl-Querschnitt (GLES 2013) (ZA5700 v2.0.0)

Document language
English

Publication Year
2022

Page/Pages
p. 306-327

Journal
International Statistical Review, 90 (2022) 2

DOI
https://doi.org/10.1111/insr.12484

ISSN
1751-5823

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.