SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.22178/pos.94-17

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Проектирование моделей обучения и алгоритмические подходы в экспертной системе обучения

Design of Learning Models and Algorithmic Approaches in an Expert Learning System
[journal article]

Alizade, Aynur Akhmad kizi

Abstract

Статья раскрывает структуры моделей обучения в экспертной системе обучения и принципы алгоритмического построения при проектировании данной системы.  Проектирование и роль моделей обучения в процессе обучения экспертной системы, а также необходимость соблюдения единых принципов алгоритмического пост... view more

Статья раскрывает структуры моделей обучения в экспертной системе обучения и принципы алгоритмического построения при проектировании данной системы.  Проектирование и роль моделей обучения в процессе обучения экспертной системы, а также необходимость соблюдения единых принципов алгоритмического построения при проектировании данных моделей, детально излагаются в ниже написанном контексте. В представленной статье, предлагаемые типы моделей формируются в аналитическом процессоре, являющимся межбазовым звеном, регулирующим процесс обучения. В процессе обучения необходимы различные виды обучаемых моделей, в зависимости от функции, которые они выполняют.... view less


The article reveals the structures of learning models in an expert learning system and the principles of algorithmic construction in the design of this system. The invention and role of learning models in learning an expert system and the need to comply with the unified principles of algorithmic con... view more

The article reveals the structures of learning models in an expert learning system and the principles of algorithmic construction in the design of this system. The invention and role of learning models in learning an expert system and the need to comply with the unified principles of algorithmic construction when designing these models are described in detail in the context written below. In the presented article, the proposed types of models are formed in the analytical processor, which is an InterBase link that regulates the learning process. Depending on their function, different types of trainable models are needed in the learning process.... view less

Keywords
artificial intelligence

Classification
Natural Science and Engineering, Applied Sciences

Free Keywords
expert learning system; learning models; diagnostic testing; simulation models; algorithmic approach; overlay model; pocket dictionary

Document language
Russian

Publication Year
2023

Page/Pages
p. 5007-5011

Journal
Path of Science, 9 (2023) 7

ISSN
2413-9009

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.