SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(543.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-90206-8

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms

[working paper]

Ramaharo, Franck
Randriamifidy, Fitiavana

Abstract

The aim of this note is to identify the factors influencing renewable energy consumption in Madagascar. We tested 12 features covering macroeconomic, financial, social, and environmental aspects, including economic growth, domestic investment, foreign direct investment, financial development, indust... view more

The aim of this note is to identify the factors influencing renewable energy consumption in Madagascar. We tested 12 features covering macroeconomic, financial, social, and environmental aspects, including economic growth, domestic investment, foreign direct investment, financial development, industrial development, inflation, income distribution, trade openness, exchange rate, tourism development, environmental quality, and urbanization. To assess their significance, we assumed a linear relationship between renewable energy consumption and these features over the 1990-2021 period. Next, we applied different machine learning feature selection algorithms classified as filter-based (relative importance for linear regression, correlation method), embedded (LASSO), and wrapper-based (best subset regression, stepwise regression, recursive feature elimination, iterative predictor weighting partial least squares, Boruta, simulated annealing, and genetic algorithms) methods. Our analysis revealed that the five most influential drivers stem from macroeconomic aspects. We found that domestic investment, foreign direct investment, and inflation positively contribute to the adoption of renewable energy sources. On the other hand, industrial development and trade openness negatively affect renewable energy consumption in Madagascar.... view less

Keywords
Madagascar; renewable energy; energy consumption

Classification
Special areas of Departmental Policy

Free Keywords
machine learning; feature selection algorithm

Document language
English

Publication Year
2023

Page/Pages
21 p.

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.