SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(543.2 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-90206-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms

[Arbeitspapier]

Ramaharo, Franck
Randriamifidy, Fitiavana

Abstract

The aim of this note is to identify the factors influencing renewable energy consumption in Madagascar. We tested 12 features covering macroeconomic, financial, social, and environmental aspects, including economic growth, domestic investment, foreign direct investment, financial development, indust... mehr

The aim of this note is to identify the factors influencing renewable energy consumption in Madagascar. We tested 12 features covering macroeconomic, financial, social, and environmental aspects, including economic growth, domestic investment, foreign direct investment, financial development, industrial development, inflation, income distribution, trade openness, exchange rate, tourism development, environmental quality, and urbanization. To assess their significance, we assumed a linear relationship between renewable energy consumption and these features over the 1990-2021 period. Next, we applied different machine learning feature selection algorithms classified as filter-based (relative importance for linear regression, correlation method), embedded (LASSO), and wrapper-based (best subset regression, stepwise regression, recursive feature elimination, iterative predictor weighting partial least squares, Boruta, simulated annealing, and genetic algorithms) methods. Our analysis revealed that the five most influential drivers stem from macroeconomic aspects. We found that domestic investment, foreign direct investment, and inflation positively contribute to the adoption of renewable energy sources. On the other hand, industrial development and trade openness negatively affect renewable energy consumption in Madagascar.... weniger

Thesaurusschlagwörter
Madagaskar; erneuerbare Energie; Energieverbrauch

Klassifikation
spezielle Ressortpolitik

Freie Schlagwörter
machine learning; feature selection algorithm

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
21 S.

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.