SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/up.v8i3.6293

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Investigating the Nonlinear Relationship Between Car Dependency and the Built Environment

[journal article]

Cao, Jun
Jin, Tanhua
Shou, Tao
Cheng, Long
Liu, Zhicheng
Witlox, Frank

Abstract

Car-dominated daily travel has caused many severe and urgent urban problems across the world, and such travel patterns have been found to be related to the built environment. However, few existing studies have uncovered the nonlinear relationship between the built environment and car dependency usin... view more

Car-dominated daily travel has caused many severe and urgent urban problems across the world, and such travel patterns have been found to be related to the built environment. However, few existing studies have uncovered the nonlinear relationship between the built environment and car dependency using a machine learning method, thus failing to provide policymakers with nuanced evidence-based guidance on reducing car dependency. Using data from Puget Sound regional household travel surveys, this study analyzes the complicated relationship between car dependency and the built environment using the gradient boost decision tree method. The results show that people living in high-density areas are less likely to rely on private cars than those living in low-density neighborhoods. Both threshold and nonlinear effects are observed in the relationships between the built environment and car dependency. Increasing road density promotes car usage when the road density is below 6 km/km2. However, the positive association between road density and car use is not observed in areas with high road density. Increasing pedestrian-oriented road density decreases the likelihood of using cars as the main mode. Such a negative effect is most effective when the pedestrian-oriented road density is over 14.5 km/km2. More diverse land use also discourages people’s car use, probably because those areas are more likely to promote active modes. Destination accessibility has an overall negative effect and a significant threshold effect on car dependency. These findings can help urban planners formulate tailored land-use interventions to reduce car dependency.... view less

Keywords
motor vehicle; architectural environment; choice of means of transport; road traffic; area utilization

Classification
Area Development Planning, Regional Research

Free Keywords
Puget Sound; built environment; car dependency; machine learning; nonlinearity; threshold effects

Document language
English

Publication Year
2023

Page/Pages
p. 41-55

Journal
Urban Planning, 8 (2023) 3

Issue topic
Car Dependency and Urban Form

ISSN
2183-7635

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.