SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(785.1Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.15464/easy.2023.03

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Garbage in - Garbage out? Datenqualität im Umgang mit digitalen Verhaltensdaten

[journal article]

Fröhling, Leon
Birkenmaier, Lukas
Daikeler, Jessica

Abstract

Während in den quantitativen Sozialwissenschaften Umfragedaten seit jeher das Herzstück der Informationsgewinnung bilden, spielten Beobachtungsdaten und andere Datenquellen eine eher untergeordnete Rolle. Soziale Medien und mobile Endgeräte lassen nun digitale Verhaltensdaten immer mehr in den Mitte... view more

Während in den quantitativen Sozialwissenschaften Umfragedaten seit jeher das Herzstück der Informationsgewinnung bilden, spielten Beobachtungsdaten und andere Datenquellen eine eher untergeordnete Rolle. Soziale Medien und mobile Endgeräte lassen nun digitale Verhaltensdaten immer mehr in den Mittelpunkt sozialwissenschaftlicher Forschung rücken. Doch selbst die innovativsten und umfangreichsten Datenmengen sind unzureichend, wenn sie nicht von hoher Qualität sind. Dieser Artikel diskutiert anhand eingängiger Beispiele die grundlegenden Herausforderungen bei der Analyse digitaler Verhaltensdaten und präsentiert einen zentralen Ansatz zur Evaluation ihrer Qualität.... view less


While survey data has always been at the heart of information gathering in the quantitative social sciences, observational data and other data sources have played a rather subordinate role. Social media and mobile devices are now making new forms of digital behavioral data increasingly central to so... view more

While survey data has always been at the heart of information gathering in the quantitative social sciences, observational data and other data sources have played a rather subordinate role. Social media and mobile devices are now making new forms of digital behavioral data increasingly central to social science research. However, even the most innovative and comprehensive data sets are insufficient if they are not of high quality. This article discusses the basic challenges of analyzing digital behavioral data using several use cases. Ultimately, it presents one central framework to evaluate the applicability of digital behavioral data for social science research.... view less

Keywords
data capture; digitalization; representativity; validity; data quality

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Beobachtungsdaten; digitale Verhaltensdaten

Document language
German

Publication Year
2023

Page/Pages
p. 21-30

Journal
easy_social_sciences (2023) 68

Issue topic
Digitale Gesellschaft(en): Neue Forschungsansätze zur Digitalen Transformation

ISSN
2199-9082

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.