SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.093 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-86011-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Linking Surveys and Digital Trace Data: Insights From two Studies on Determinants of Data Sharing Behaviour

[Zeitschriftenartikel]

Silber, Henning
Breuer, Johannes
Beuthner, Christoph
Gummer, Tobias
Keusch, Florian
Siegers, Pascal
Stier, Sebastian
Weiß, Bernd

Abstract

Combining surveys and digital trace data can enhance the analytic potential of both data types. We present two studies that examine factors influencing data sharing behaviour of survey respondents for different types of digital trace data: Facebook, Twitter, Spotify and health app data. Across those... mehr

Combining surveys and digital trace data can enhance the analytic potential of both data types. We present two studies that examine factors influencing data sharing behaviour of survey respondents for different types of digital trace data: Facebook, Twitter, Spotify and health app data. Across those data types, we compared the relative impact of four factors on data sharing: data sharing method, respondent characteristics, sample composition and incentives. The results show that data sharing rates differ substantially across data types. Two particularly important factors predicting data sharing behaviour are the incentive size and data sharing method, which are both directly related to task difficulty and respondent burden. In sum, the paper reveals systematic variation in the willingness to share additional data which need to be considered in research designs linking surveys and digital traces.... weniger

Thesaurusschlagwörter
Digitale Medien; Datengewinnung; Datenaustausch; Befragung; Twitter; Soziale Medien; Umfrageforschung; Daten; Facebook

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
consent; data donation; data linkage; data sharing rates; incentives; social network sites

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S387-S407

Zeitschriftentitel
Journal of the Royal Statistical Society, Series A (Statistics in Society), 185 (2022) Suppl. 2

DOI
https://doi.org/10.1111/rssa.12954

ISSN
1467-985X

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0

FörderungGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.