SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12758/mda.2022.11

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Do We Have to Mix Modes in Probability-Based Online Panel Research to Obtain More Accurate Results?

[Zeitschriftenartikel]

Kocar, Sebastian
Biddle, Nicholas

Abstract

Online probability-based panels often apply two or more data collection modes to cover both the online and offline populations with the aim of obtaining results that are more representative of the population of interest. This study used such a panel to investigate how necessary it is, from the cover... mehr

Online probability-based panels often apply two or more data collection modes to cover both the online and offline populations with the aim of obtaining results that are more representative of the population of interest. This study used such a panel to investigate how necessary it is, from the coverage error standpoint, to include the offline population by mixing modes in online panel survey research. This study evaluated the problem from three different perspectives: undercoverage bias, bias related to survey item topics and vari­able characteristics, and accuracy of online-only samples relative to nationally representa­tive benchmarks. The results indicated that attitudinal, behavioral, and factual differences between the online and offline populations in Australia are, on average, minor. This means that, considering that survey research commonly includes a relatively low proportion of the offline population, survey estimates would not be significantly affected if probability-based panels did not mix modes and instead were online only, for the majority of topics. The benchmarking analysis showed that mixing the online mode with the offline mode did not improve the average accuracy of estimates relative to nationally representative bench­marks. Based on these findings, it is argued that other online panels should study this issue from different perspectives using the approaches proposed in this paper. There might also be an argument for (temporarily) excluding the offline population in probability-based on­line panel research in particular country contexts as this might have practical implications.... weniger

Thesaurusschlagwörter
Umfrageforschung; Online-Befragung; Datengewinnung; Stichprobe; Repräsentativität; Panel

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
online panels; online and offline populations; mixed-mode data collection; representation errors; benchmarking

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
S. 93-120

Zeitschriftentitel
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 17 (2023) 1

ISSN
2190-4936

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.