SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12924/johs2022.18010029

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Measuring HS in Small, Vulnerable Municipalities: A Quantitative Approach

[Zeitschriftenartikel]

Tovar Cuevas, José Rafael
Díaz Mutis, Juan David
Balanta Cobo, Sandra
Tovar Cuevas, Luis Miguel

Abstract

This article presents a methodological proposal for formulating a Human Security Index (HSI), including information from institutional sources and the inhabitants' perception of security. The developed methodology uses quantitative methods to evaluate HS (Human Security) in small municipalities with... mehr

This article presents a methodological proposal for formulating a Human Security Index (HSI), including information from institutional sources and the inhabitants' perception of security. The developed methodology uses quantitative methods to evaluate HS (Human Security) in small municipalities with large rural areas affected by the confluence of different social and economic problems. Given the security conditions in the area, it was impossible to use a random sampling mechanism. Therefore, the data collected have a sample size that cannot be considered significant enough to make inferences using a frequentist statistics approach. The method to construct the index is illustrated using Miranda's data, a Colombian municipality exposed to decades of armed conflict. With the answers given by 55 interviewees to questions related to the armed conflict such as presence-absence reminders and retained values of violent events, a proposal of 36 indices was made, and two of them were selected for the study, following some statistical criteria. In the construction of one of these selected indices, we used information from binary variables and, for the other index, we used information from count data. The values obtained by both indices for the municipality of Miranda were, respectively, 46.4 and 35.8. According to HS experts, both values can be considered moderate levels in the perception of insecurity by residents of the municipality.... weniger

Thesaurusschlagwörter
menschliche Sicherheit; Index; Sicherheit; Konflikt; Wahrnehmung; Gewalt; Kriminalität; Kleinstadt; Kolumbien; Südamerika

Klassifikation
Friedens- und Konfliktforschung, Sicherheitspolitik

Freie Schlagwörter
Bayes Theorem; Latent Variable; Principal Component Analysis

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 29-48

Zeitschriftentitel
Journal of Human Security, 18 (2022) 1

ISSN
1835-3800

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.