SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.075 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-83689-8

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas

[Zeitschriftenartikel]

Marchetti, Stefano
Tzavidis, Nikos

Abstract

Small area estimation is receiving considerable attention due to the high demand for small area statistics. Small area estimators of means and totals have been widely studied in the literature. Moreover, in the last years also small area estimators of quantiles and poverty indicators have been studi... mehr

Small area estimation is receiving considerable attention due to the high demand for small area statistics. Small area estimators of means and totals have been widely studied in the literature. Moreover, in the last years also small area estimators of quantiles and poverty indicators have been studied. In contrast, small area estimators of inequality indicators, which are often used in socio-economic studies, have received less attention. In this article, we propose a robust method based on the M-quantile regression model for small area estimation of the Theil index and the Gini coefficient, two popular inequality measures. To estimate the mean squared error a non-parametric bootstrap is adopted. A robust approach is used because often inequality is measured using income or consumption data, which are often non-normal and affected by outliers. The proposed methodology is applied to income data to estimate the Theil index and the Gini coefficient for small domains in Tuscany (provinces by age groups), using survey and Census micro-data as auxiliary variables. In addition, a design-based simulation is carried out to study the behaviour of the proposed robust estimators. The performance of the bootstrap mean squared error estimator is also investigated in the simulation study.... weniger

Thesaurusschlagwörter
Statistik; Ungleichheit; soziale Ungleichheit; Indikator; Indikatorenbildung; Schätzung; Messung; Italien; Gebiet

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Allgemeine Soziologie, Makrosoziologie, spezielle Theorien und Schulen, Entwicklung und Geschichte der Soziologie

Freie Schlagwörter
Small area estimation; M-quantile models; inequality indicators; EU-SILC

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 955-979

Zeitschriftentitel
Journal of Official Statistics, 37 (2021) 4

DOI
https://doi.org/10.2478/jos-2021-0041

ISSN
2001-7367

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 3.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.