SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.5771/9783748935360

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Text- und Data-Mining: Die Anforderungen digitaler Forschungsmethoden an ein innovations- und wissenschaftsfreundliches Urheberrecht

[Dissertation]

Kleinkopf, Felicitas Lea

Abstract

Immer häufiger werden digitale Methoden wie das Text- und Data-Mining zur Erkenntnisfindung eingesetzt, das die Möglichkeit bietet, Muster in großen Datensätzen zu erkennen und zugleich Grundlage des maschinellen Lernens ist. Die Arbeit betrachtet diese Methode aus urheberrechtlicher Perspektive und... mehr

Immer häufiger werden digitale Methoden wie das Text- und Data-Mining zur Erkenntnisfindung eingesetzt, das die Möglichkeit bietet, Muster in großen Datensätzen zu erkennen und zugleich Grundlage des maschinellen Lernens ist. Die Arbeit betrachtet diese Methode aus urheberrechtlicher Perspektive und berücksichtigt dabei die Bedeutung und Steuerungswirkung urheberrechtlicher Schranken, die besondere Interessenlage im Wissenschaftsurheberrecht sowie interdisziplinäre Erkenntnisse. In der umfassenden Analyse wird die komplexe Rechtsmaterie strukturiert, es werden Defizite aufgezeigt und konkrete Lösungsvorschläge unterbreitet. Ein Schwerpunkt liegt dabei auf der langfristigen Zugänglichkeit der erzeugten Forschungsdaten.... weniger


Digital methods such as text and data mining are utilised more and more frequently to gather knowledge, thereby offering the ability to recognise patterns in large data sets as well as being the basis of machine learning. This work examines this digital method from a copyright perspective, evaluatin... mehr

Digital methods such as text and data mining are utilised more and more frequently to gather knowledge, thereby offering the ability to recognise patterns in large data sets as well as being the basis of machine learning. This work examines this digital method from a copyright perspective, evaluating the significance and controlling effect of copyright barriers, the special interests involved in scientific copyright law and elements of interdisciplinary knowledge. This comprehensive analysis structures this complex legal matter, identifies deficits and suggests viable solutions. One focus lies on the long-term accessibility of the research data that are generated within this process.... weniger

Thesaurusschlagwörter
Forschung; Digitalisierung; Daten; Analyse; Textanalyse; Datenzugang; Datenschutz; Bibliothek; Archiv; künstliche Intelligenz; Algorithmus; Wissenschaft; Urheberrecht; Wissensgesellschaft; Bundesrepublik Deutschland; EU

Klassifikation
Recht
Information und Dokumentation, Bibliotheken, Archive

Freie Schlagwörter
Text Mining; Data Mining; Forschungsdaten; Innovation; Kulturerbe-Einrichtung; Nachnutzung; Schranke

Sprache Dokument
Deutsch

Publikationsjahr
2022

Verlag
Nomos Verlagsgesellschaft mbH & Co. KG

Erscheinungsort
Baden-Baden

Seitenangabe
396 S.

Schriftenreihe
Schriftenreihe des Archivs für Medienrecht und Medienwissenschaft (UFITA), 300

ISBN
978-3-7489-3536-0

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.