SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.276 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-81272-3

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Scaling up search engine audits: Practical insights for algorithm auditing

[Zeitschriftenartikel]

Ulloa, Roberto
Makhortykh, Mykola
Urman, Aleksandra

Abstract

Algorithm audits have increased in recent years due to a growing need to independently assess the performance of automatically curated services that process, filter and rank the large and dynamic amount of information available on the Internet. Among several methodologies to perform such audits, vir... mehr

Algorithm audits have increased in recent years due to a growing need to independently assess the performance of automatically curated services that process, filter and rank the large and dynamic amount of information available on the Internet. Among several methodologies to perform such audits, virtual agents stand out because they offer the ability to perform systematic experiments, simulating human behaviour without the associated costs of recruiting participants. Motivated by the importance of research transparency and replicability of results, this article focuses on the challenges of such an approach. It provides methodological details, recommendations, lessons learned and limitations based on our experience of setting up experiments for eight search engines (including main, news, image and video sections) with hundreds of virtual agents placed in different regions. We demonstrate the successful performance of our research infrastructure across multiple data collections, with diverse experimental designs, and point to different changes and strategies that improve the quality of the method. We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time, and we hope that this article can serve as a basis for further research in this area.... weniger

Thesaurusschlagwörter
Nachrichten; Datengewinnung; Algorithmus; Bild; Text; Video; Online-Dienst; Monitoring; Suchmaschine

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Informationswissenschaft
interaktive, elektronische Medien

Freie Schlagwörter
Algorithm auditing; data collection; search engine audits; user modelling

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 1-16

Zeitschriftentitel
Journal of Information Science (2022)

DOI
https://doi.org/10.1177/01655515221093029

ISSN
1741-6485

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0

FörderungGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.