SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12758/mda.2022.04

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Factorial Surveys with Multiple Ratings per Vignette: A Seemingly Unrelated Multilevel Regressions Framework

[Zeitschriftenartikel]

Schmidt-Catran, Alexander W.

Abstract

Factorial surveys are a prominent tool in the social sciences. Reanalyzing a literature sur­vey on the factorial survey approach (Wallander, 2009), I show that about a quarter of ap­plied factorial surveys asks respondents to provide multiple ratings on the same vignette. This paper is the first to ... mehr

Factorial surveys are a prominent tool in the social sciences. Reanalyzing a literature sur­vey on the factorial survey approach (Wallander, 2009), I show that about a quarter of ap­plied factorial surveys asks respondents to provide multiple ratings on the same vignette. This paper is the first to propose a statistical modeling approach for precisely this situation. Data from factorial surveys with multiple ratings per vignette are afflicted with two sourc­es of statistical dependencies. First, each respondent answers multiple vignettes, which is typically accounted for via random effects models, and, second, each vignette prompts multiple ratings. The first problem is common for almost any factorial survey and has been addressed decades ago. The second problem is addressed here. I propose to apply a seem­ingly unrelated regression approach to account for the statistical dependencies between multiple ratings per vignette. Due to the use of a structural equation modeling approach, the model allows not only to correctly compare coefficients across ratings but also to ana­lyze the factor structure underlying these ratings. The proposed model is illustrated by two examples from recent research. All data and syntax are available online and allows for an easy adaption of the proposed model to readers’ own research.... weniger

Thesaurusschlagwörter
Umfrageforschung; Datengewinnung; Erhebungsmethode; Faktorenanalyse; Regression

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
factorial survey; vignette study; seemingly unrelated regressions; multiple ratings; multilevel; random effects; factor analysis; latent variables

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 335-360

Zeitschriftentitel
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 16 (2022) 2

ISSN
2190-4936

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.