SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(2.185Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-80477-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Applying multilevel regression weighting when only population margins are available

[journal article]

Bruch, Christian
Felderer, Barbara

Abstract

Reliable survey data is needed to be able to infer survey findings to the general population. However, self-selection or panel attrition of the survey respondents may bias survey estimations. To tackle these challenges, weighting adjustments have been established to correct for different inclusion p... view more

Reliable survey data is needed to be able to infer survey findings to the general population. However, self-selection or panel attrition of the survey respondents may bias survey estimations. To tackle these challenges, weighting adjustments have been established to correct for different inclusion probabilities and to reduce bias in the survey. These strategies adjust the survey data to match known population statistics (e.g., means and proportions). The usefulness of weighting strategies depends on the benchmarks of the variables available from official statistics or other highly reliable sources, for instance, whether population information on the weighting variables is available as joint distributions of all variables or as margins only. While complex weighting strategies have been developed for poststratification using joint distributions (for example multilevel regression and poststratification), these methods are not applicable when only population margins are available. In this paper, we propose two practical approaches that combine the multilevel regression weighting method with weighting algorithms using marginal population distributions only. In a simulation study, we applied both approaches to volunteer samples.... view less


Um Selektion in Befragungsdaten auszugleichen, werden üblicherweise Gewichtungsverfahren angewendet. Deren Nützlichkeit hängt auch davon ab, ob Bevölkerungsinformationen zu den Gewichtungsvariablen als gemeinsame Verteilungen aller Merkmale oder nur als Randverteilungen der einzelnen Merkmale verfüg... view more

Um Selektion in Befragungsdaten auszugleichen, werden üblicherweise Gewichtungsverfahren angewendet. Deren Nützlichkeit hängt auch davon ab, ob Bevölkerungsinformationen zu den Gewichtungsvariablen als gemeinsame Verteilungen aller Merkmale oder nur als Randverteilungen der einzelnen Merkmale verfügbar sind. In der Praxis liegen häufig nur Randverteilungen vor, wodurch komplexe Verfahren wie MrP nicht verwendet werden können. In diesem Artikel werden zwei praktische Ansätze vorgeschlagen, die die MrP-Idee so adaptieren, dass sie auch mit Randverteilungen verwendet werden kann.... view less

Keywords
regression; survey; weighting; data capture

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Complex estimation; Marginal population distributions; Multilevel regression

Document language
English

Publication Year
2022

Page/Pages
p. 1-22

Journal
Communications in Statistics - Simulation and Computation (2022) Latest Articles

DOI
https://doi.org/10.1080/03610918.2021.1988642

ISSN
1532-4141

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0

FundingGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.