SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(573.6 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.34669/WI.WS/29

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Foundations of Artificial Intelligence and Machine Learning

[Arbeitspapier]

Früh, Alfred
Haux, Dario

Körperschaftlicher Herausgeber
Weizenbaum Institute for the Networked Society - The German Internet Institute

Abstract

Today, artificial intelligence and machine learning play a crucial role in various fields of application. In one way or another, they influence our everyday lives. This current state of affairs and the suggestive power of these terms have triggered fundamental discussions in society. However, the te... mehr

Today, artificial intelligence and machine learning play a crucial role in various fields of application. In one way or another, they influence our everyday lives. This current state of affairs and the suggestive power of these terms have triggered fundamental discussions in society. However, the technical basics have not received the attention they deserve - and need. This is especially true from a legal perspective, where groundwork on both the fundamental functionality as well as all the relevant terms surrounding the technology seems to be almost non-existent. This paper aims to fill this gap. We examine the technical background of artificial intelligence and machine learning from an interdisciplinary perspective and aim to develop common definitions that can be used for further research in legal academia. These findings provide a common starting point for a more differentiated treatment of legal (and technical) questions surrounding artificial intelligence and machine learning and allow legal academia to make reliable legal statements as well as to advance legal research in this field.... weniger

Thesaurusschlagwörter
künstliche Intelligenz; Recht; neue Technologie

Klassifikation
Technikfolgenabschätzung
Recht

Freie Schlagwörter
Machine Learning

Sprache Dokument
Englisch

Publikationsjahr
2022

Erscheinungsort
Berlin

Seitenangabe
25 S.

Schriftenreihe
Weizenbaum Series, 29

ISSN
2748-5587

Status
Erstveröffentlichung; begutachtet

Lizenz
Creative Commons - Namensnennung 4.0

FörderungThis work has been funded by the Federal Ministry of Education and Research of Germany (BMBF) (grant no.: 16DII121, 16DII122, 16DII123, 16DII124, 16DII125, 16DII126, 16DII127, 16DII128 - "Deutsches Internet-Institut").


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.