SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/mac.v9i4.4167

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Epistemic Overconfidence in Algorithmic News Selection

[journal article]

van der Velden, Mariken
Loecherbach, Felicia

Abstract

The process of news consumption has undergone great changes over the past decade: Information is now available in an ever-increasing amount from a plethora of sources. Recent work suggests that most people would favor algorithmic solutions over human editors. This stands in contrast to public and sc... view more

The process of news consumption has undergone great changes over the past decade: Information is now available in an ever-increasing amount from a plethora of sources. Recent work suggests that most people would favor algorithmic solutions over human editors. This stands in contrast to public and scholarly debate about the pitfalls of algorithmic news selection - i.e., the so-called "filter bubbles". This study therefore investigates reasons and motivations which might lead people to prefer algorithmic gatekeepers over human ones. We expect that people have more algorithmic appreciation when consuming news to pass time, entertain oneself, or out of escapism than when using news to keep up-to-date with politics (H1). Secondly, we hypothesize the extent to which people are confident in their own cognitive abilities to moderate that relationship: When people are overconfident in their own capabilities to estimate the relevance of information, they are more likely to have higher levels of algorithmic appreciation, due to the third person effect (H2). For testing those two pre-registered hypotheses, we conducted an online survey with a sample of 268 US participants and replicated our study using a sample of 384 Dutch participants. The results show that the first hypothesis cannot be supported by our data. However, a positive interaction between overconfidence and algorithmic appreciation for the gratification of surveillance (i.e., gaining information about the world, society, and politics) was found in both samples. Thereby, our study contributes to our understanding of the underlying reasons people have for choosing different forms of gatekeeping when selecting news.... view less

Classification
Impact Research, Recipient Research

Free Keywords
algorithmic appreciation; algorithmic gatekeepers; algorithmic news selection; third person effect; uses and gratifications

Document language
English

Publication Year
2021

Page/Pages
p. 182-197

Journal
Media and Communication, 9 (2021) 4

Issue topic
Algorithmic Systems in the Digital Society

ISSN
2183-2439

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.