SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.15421/192121

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

AI-driven Optimization in Healthcare: the Diagnostic Process

Искусственный интеллект и оптимизация в области здравоохранения: процесс постановки диагноза
Штучний інтелект та оптимізація в галузі охорони здоров’я: процес встановлення діагнозу
[Zeitschriftenartikel]

Lyon, Jérôme Yves
Bogodistov, Yevgen
Moormann, Jürgen

Abstract

Purpose: Process optimization in healthcare using artificial intelligence (AI) is still in its infancy. In this study, we address the research question "To what extent can an AI-driven chatbot help to optimize the diagnostic process?" Design/ Method/ Approach: First, we developed a mathematical mode... mehr

Purpose: Process optimization in healthcare using artificial intelligence (AI) is still in its infancy. In this study, we address the research question "To what extent can an AI-driven chatbot help to optimize the diagnostic process?" Design/ Method/ Approach: First, we developed a mathematical model for the utility (i.e., total satisfaction received from consuming a good or service) resulting from the diagnostic process in primary healthcare. We calculated this model using MS Excel. Second, after identifying the main pain points for optimization (e.g., waiting time in the queue), we ran a small experiment (n=25) in which we looked at time to diagnosis, average waiting time, and their standard deviations. In addition, we used a questionnaire to examine patient perceptions of the interaction with an AI-driven chatbot. Findings: Our results show that scheduling is the main factor causing issues in a physician's work. An AI-driven chatbot may help to optimize waiting time as well as provide data for faster and more accurate diagnosis. We found that patients trust AI-driven solutions primarily when a real (not virtual) physician is also involved in the diagnostic process. Practical Implications: AI-driven chatbots may indeed help to optimize diagnostic processes. Nevertheless, physicians need to remain involved in the process in order to establish patient trust in the diagnosis. Originality/ Value: We analyze the utility to physicians and patients of a diagnostic process and show that, while scheduling may reduce the overall process utility, AI-based solutions may increase the overall process utility. Research Limitations/ Future Research: First, our simulation includes a number of assumptions with regard to the distribution of mean times for encounter and treatment. Second, the data we used for our model were obtained from different papers, and thus from different healthcare systems. Third, our experimental study has a very small sample size and only one test-physician. Paper type: Empirical.... weniger

Thesaurusschlagwörter
Gesundheitswesen; Diagnose; künstliche Intelligenz; Arzt; Patient; medizinische Versorgung

Klassifikation
Technikfolgenabschätzung
Medizin, Sozialmedizin

Freie Schlagwörter
Process Optimization; Chatbot

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 218-231

Zeitschriftentitel
European Journal of Management Issues, 29 (2021) 4

ISSN
2523-451X

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.