SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(527.7Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-76579-7

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Statistical Disclosure Control Methods for Microdata from the Labour Force Survey

[journal article]

Pietrzak, Michał

Abstract

The aim of this article is to analyse the possibility of applying selected perturbative masking methods of Statistical Disclosure Control to microdata, i.e. unit‑level data from the Labour Force Survey. In the first step, the author assessed to what extent the confidentiality of information was prot... view more

The aim of this article is to analyse the possibility of applying selected perturbative masking methods of Statistical Disclosure Control to microdata, i.e. unit‑level data from the Labour Force Survey. In the first step, the author assessed to what extent the confidentiality of information was protected in the original dataset. In the second step, after applying selected methods implemented in the sdcMicro package in the R programme, the impact of those methods on the disclosure risk, the loss of information and the quality of estimation of population quantities was assessed. The conclusion highlights some problematic aspects of the use of Statistical Disclosure Control methods which were observed during the conducted analysis.... view less

Keywords
methodological research; data processing; data protection; data preparation; data security

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Statistical Disclosure Control; perturbative methods; PRAM; Additive Noise; Rank Swapping; microdata; Labour Force Survey; sdcMicro package

Document language
English

Publication Year
2020

Page/Pages
p. 7-24

Journal
Acta Universitatis Lodziensis. Folia Oeconomica, 3 (2020) 348

DOI
https://doi.org/10.18778/0208-6018.348.01

ISSN
2353-7663

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.