SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.927 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-75546-7

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Los datos sobre COVID-19 en México: Un modelo para armar

The data on Covid-19 im Mexico: a model to assemble
[Zeitschriftenartikel]

Peña, Ricardo de la

Abstract

This essay reviews the main sources of public access information on the development of the COVID-19 pandemic in Mexico; what have been the concepts they have handled and their operational definition; what its characteristics, scope and limitations; what data has been provided in each source; how a c... mehr

This essay reviews the main sources of public access information on the development of the COVID-19 pandemic in Mexico; what have been the concepts they have handled and their operational definition; what its characteristics, scope and limitations; what data has been provided in each source; how a certain data source is linked with others and how this makes it possible, within accuracy margins that leave space for speculation, the construction of a statistical model that enables a comprehensive and coherent estimation of the incidents of cases and deaths caused by the SARS-CoV-2 virus and the consequences caused in the health of the population of Mexico by this pandemic. Although with the data directly provided in a database by the health authorities of the country it is possible to know the volume of cases confirmed as positive for SARS-CoV-2 through various methods, this information only accounts for part of the phenomenon and leaves hides the real magnitude of the pandemic Therefore, the expansion of cases from alternative sources is necessary, as at the time was the results of the sentinel model and now the data from the National Survey of Health and Nutrition COVID-19 and the count of excess mortality according to the registration of death certificates carried out by various public institutions in a coordinated manner. These sources allow corroborating that at the close of the first year of the pandemic, just under half of the country's population, 60 million people, had been infected with the virus that causes COVID-19 and the volume of deaths added to normal reached almost 300 thousand people.... weniger

Thesaurusschlagwörter
Mexiko; Infektionskrankheit; gesundheitliche Folgen; Krankheitsverlauf; Datengewinnung; amtliche Statistik; Gesundheitswesen; Mittelamerika

Klassifikation
Gesundheitspolitik

Freie Schlagwörter
COVID-19; Coronavirus; pandemic; data mining; deaths

Sprache Dokument
Spanisch

Publikationsjahr
2021

Seitenangabe
S. 15-48

Zeitschriftentitel
Denarius: Revista de Economía y Administración (2021) 40

ISSN
2448-5403

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.