SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(232.5Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-75528-7

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines

[conference paper]

Makhortykh, Mykola
Urman, Aleksandra
Ulloa, Roberto

Abstract

Web search engines influence perception of social reality by filtering and ranking information. However, their outputs are often subjected to bias that can lead to skewed representation of subjects such as professional occupations or gender. In our paper, we use a mixed-method approach to investigat... view more

Web search engines influence perception of social reality by filtering and ranking information. However, their outputs are often subjected to bias that can lead to skewed representation of subjects such as professional occupations or gender. In our paper, we use a mixed-method approach to investigate presence of race and gender bias in representation of artificial intelligence (AI) in image search results coming from six different search engines. Our findings show that search engines prioritize anthropomorphic images of AI that portray it as white, whereas non-white images of AI are present only in non-Western search engines. By contrast, gender representation of AI is more diverse and less skewed towards a specific gender that can be attributed to higher awareness about gender bias in search outputs. Our observations indicate both the need and the possibility for addressing bias in representation of societally relevant subjects, such as technological innovation, and emphasize the importance of designing new approaches for detecting bias in information retrieval systems.... view less

Keywords
online service; artificial intelligence; information retrieval; algorithm; representation; search engine; trend

Classification
Interactive, electronic Media

Free Keywords
web search; bias; artificial intelligence

Collection Title
Advances in Bias and Fairness in Information Retrieval

Editor
Boratto, Ludovico; Faralli, Stefano; Marras, Mirko; Stilo, Giovanni

Conference
Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021. Lucca, Italy

Document language
English

Publication Year
2021

Publisher
Springer

Page/Pages
p. 1-16

Series
Communications in Computer and Information Science, 1418

DOI
https://doi.org/10.1007/978-3-030-78818-6_5

ISBN
978-3-030-78818-6

Status
Preprint; not reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.