SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(298.7 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74897-4

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Modelling the incremental value of personality facets: the domains-incremental facets-acquiescence bifactor showmodel

[Zeitschriftenartikel]

Danner, Daniel
Lechner, Clemens
Soto, Christopher J.
John, Oliver P.

Abstract

Personality can be described at different levels of abstraction. Whereas the Big Five domains are the dominant level of analysis, several researchers have called for more fine-grained approaches, such as facet-level analysis. Personality facets allow more comprehensive descriptions, more accurate pr... mehr

Personality can be described at different levels of abstraction. Whereas the Big Five domains are the dominant level of analysis, several researchers have called for more fine-grained approaches, such as facet-level analysis. Personality facets allow more comprehensive descriptions, more accurate predictions of outcomes, and a better understanding of the mechanisms underlying trait–outcome relationships. However, several methodological issues plague existing evidence on the added value of facet-level descriptions: Manifest facet scale scores differ with respect to their reliability, domain-level variance (variance that is due to the domain factor) and incremental facet-level variance (variance that is specific to a facet and not shared with the other facets). Moreover, manifest scale scores overlap substantially, which affects associations with criterion variables. We suggest a structural equation modelling approach that allows domain-level variance to be separated from incremental facet-level variance. We analysed data from a heterogeneous sample of adults in the USA (N = 1193) who completed the 60-item Big Five Inventory-2. The results illustrate how the variance of manifest personality items and scale scores can be decomposed into domain-level and incremental facet-level variance. The association with criterion variables (educational attainment, income, health, and life satisfaction) further demonstrates the incremental predictive power of personality facets.... weniger

Thesaurusschlagwörter
Datengewinnung; Persönlichkeitsmerkmal; Messinstrument; Validierung; Datenqualität; Psychometrie; Reliabilität; Persönlichkeit

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
PIAAC; Big Five; personality facets; Big Five Inventory 2; DIFAB; BFI-2

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 67-84

Zeitschriftentitel
European Journal of Personality, 35 (2021) 1

DOI
https://doi.org/10.1002/per.2268

ISSN
1099-0984

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.