SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(965.1Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-73321-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

An Integrated Database to Measure Living Standards

[journal article]

Dalla Chiara, Elena
Menon, Martina
Perali, Federico

Abstract

This study generates an integrated database to measure living standards in Italy using propensity score matching. We follow the recommendations of the Commission on the Measurement of Economic Performance and Social Progress proposing that income, consumption of market goods and nonmarket activities... view more

This study generates an integrated database to measure living standards in Italy using propensity score matching. We follow the recommendations of the Commission on the Measurement of Economic Performance and Social Progress proposing that income, consumption of market goods and nonmarket activities, and wealth, rather than production, should be evaluated jointly in order to appropriately measure material welfare. Our integrated database is similar in design to the one built for the United States by the Levy Economics Institute to measure the multiple dimensions of well-being. In the United States, as is the case for Italy and most European countries, the state does not maintain a unified database to measure household economic well-being, and data sources about income and employment surveys and other surveys on wealth and the use of time have to be statistically matched. The measure of well-being is therefore the result of a multidimensional evaluation process no longer associated with a single indicator, as is usually the case when measuring gross domestic product. The estimation of individual and social welfare, multidimensional poverty and inequality does require an integrated living standard database where information about consumption, income, time use and subjective well-being are jointly available. With this objective in mind, we combine information available in four different surveys: the European Union Statistics on Income and Living Conditions Survey, the Household Budget Survey, the Time Use Survey, and the Household Conditions and Social Capital Survey. We perform three different statistical matching procedures to link the relevant dimensions of living standards contained in each survey and report both the statistical and economic tests carried out to evaluate the quality of the procedure at a high level of detail.... view less

Keywords
statistical method; matching; well-being; data; poverty; living standard; standard of living; Italy

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Propensity score; statistical matching; fused data; multidimensional poverty; European Union Statistics on Income and Living Conditions (EU-SILC); Household Budget Survey (HBS); Time Use Survey (TUS); Household Conditions and Social Capital Survey (CISF)

Document language
English

Publication Year
2019

Page/Pages
p. 531-576

Journal
Journal of Official Statistics, 35 (2019) 3

DOI
https://doi.org/10.2478/jos-2019-0023

ISSN
2001-7367

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.