SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.33119/KSzPP/2020.4.5

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Migration dissensus among tweeters at #BrexitDay

Spór migracyjny wśród użytkowników Twittera na #BrexitDay
[Zeitschriftenartikel]

Teodorowski, Piotr

Abstract

Liberal states simultaneously pursue policies of encouraging and controlling (un)desired immigration. Forces of representative democracy, nationhood, constitutionalism, and capitalism - each call for a distinct migration strategy. Previous research focusing on attitudes towards migration used quanti... mehr

Liberal states simultaneously pursue policies of encouraging and controlling (un)desired immigration. Forces of representative democracy, nationhood, constitutionalism, and capitalism - each call for a distinct migration strategy. Previous research focusing on attitudes towards migration used quantitative methods examining values and perceptions that influence people's opinions. Still, it did not explore the diversity and complexity of sentiments. This paper aims to provide a more nuanced perspective based on tweets on and around the last day of the British membership in the European Union (31 January 2020). Data were collected using NCapture - a web-browser extension that downloaded tweets with hashtags #Brexit, #BrexitDay, and #BrexitEve, and imported them directly to NVivo. Seven batches of tweets were captured on 30-31 January and 1, 7-10 February; extracting 250,095 published between 23 January and 10 February. All retweets, duplicates, non-English tweets, and spam were removed, leaving 888 tweets for the analysis. The dataset was coded twice, assigning sentiments towards Brexit as positive (n = 203), negative (n = 586), or neutral (n = 99), and using inductive thematic analysis. The findings showed the division of discourse on migration was more complicated than merely in favor and against immigration. Interestingly, they also exhibited the shift in the British debate from benefits and drawbacks of immigration to the reciprocity of migration policies in the future relations between the United Kingdom and the European Union.... weniger

Thesaurusschlagwörter
Großbritannien; Einwanderung; Migrationspolitik; öffentliche Meinung; Twitter; EU

Klassifikation
Migration

Freie Schlagwörter
Brexit

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 83-104

Zeitschriftentitel
Studia z Polityki Publicznej / Public Policy Studies, 7 (2020) 4

ISSN
2719-7131

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.