SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.22178/pos.67-2

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Forecasting COVID-19 Confirmed Cases in Ghana: A Model Selection Approach

[journal article]

Twumasi-Ankrah, Sampson
Owusu, Michael
Appiah, Simon Kojo
Pels, Wilhemina Adoma
Arthur, Doris

Abstract

This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University... view more

This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University. Four statistical forecasting techniques: Autoregressive Integrated Moving Average, Artificial Neural Network, Exponential smoothing and Autoregressive Fractional Integrated Moving Average were fitted to the COVID-19 series. Their respective forecast accuracy measures were compared to select the appropriate technique for forecasting the COVID-19 cases. Our findings revealed that the ARFIMA technique was a suitable statistical model for predicting COVID-19 cases in Ghana. The "best" model for forecasting is ARFIMA (2, 0.49, 4) which passed all the needed diagnostic tests. An unequal weight was estimated to derive a combined model for all four forecasting techniques. A 149-cumulated daily forecast from the "best" model and the combined model revealed that the number of confirmed COVID-19 cases would increase slightly until the end of this year.... view less

Classification
Health Policy

Free Keywords
exponential smoothing; COVID-19; Artificial Neural Network; Forecast; Ghana

Document language
English

Publication Year
2021

Page/Pages
p. 4001-4010

Journal
Path of Science, 7 (2021) 2

ISSN
2413-9009

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.