SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.22178/pos.67-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Forecasting COVID-19 Confirmed Cases in Ghana: A Model Selection Approach

[Zeitschriftenartikel]

Twumasi-Ankrah, Sampson
Owusu, Michael
Appiah, Simon Kojo
Pels, Wilhemina Adoma
Arthur, Doris

Abstract

This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University... mehr

This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University. Four statistical forecasting techniques: Autoregressive Integrated Moving Average, Artificial Neural Network, Exponential smoothing and Autoregressive Fractional Integrated Moving Average were fitted to the COVID-19 series. Their respective forecast accuracy measures were compared to select the appropriate technique for forecasting the COVID-19 cases. Our findings revealed that the ARFIMA technique was a suitable statistical model for predicting COVID-19 cases in Ghana. The "best" model for forecasting is ARFIMA (2, 0.49, 4) which passed all the needed diagnostic tests. An unequal weight was estimated to derive a combined model for all four forecasting techniques. A 149-cumulated daily forecast from the "best" model and the combined model revealed that the number of confirmed COVID-19 cases would increase slightly until the end of this year.... weniger

Klassifikation
Gesundheitspolitik

Freie Schlagwörter
exponential smoothing; COVID-19; Artificial Neural Network; Forecast; Ghana

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 4001-4010

Zeitschriftentitel
Path of Science, 7 (2021) 2

ISSN
2413-9009

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.