SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.152 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71219-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Detección de peatones con variaciones de forma al caminar con Modelos de Forma Activa

Pedestrian's detection with shape variations when walking with Active Shape Models
[Zeitschriftenartikel]

Antonio, Juan Alberto
Romero, Marcelo

Abstract

Se provee un detector de peatones con el algoritmo modelos de forma activa (ASM), con las etapas entrenamiento (PDM) y ajuste (ASM). Con PDM, se marcan 50 landmarks y se extraen los perfiles de grises en la silueta de cada peatón en 137 imágenes (peatón 1 y peatón 2) aplicando los modos de variación... mehr

Se provee un detector de peatones con el algoritmo modelos de forma activa (ASM), con las etapas entrenamiento (PDM) y ajuste (ASM). Con PDM, se marcan 50 landmarks y se extraen los perfiles de grises en la silueta de cada peatón en 137 imágenes (peatón 1 y peatón 2) aplicando los modos de variación (PCA). El aporte de este trabajo es el ajuste y detección de un peatón a pesar de las variaciones. Al final con los resultados evaluados con leave one out en cada imagen de 1 080 × 720 pixeles y con la métrica del error cuadrático medio (MSE) se obtiene un promedio total de 12.7 pixeles en la distancia de error entre los landmarks originales y los landmarks estimados.... weniger


A pedestrian detector is provided with the algorithm models of active shape (ASM), with the stages: training (PDM) and adjustment (ASM). With PDM, 50 landmarks are marked, and gray profiles are extracted in the silhouette of each pedestrian in 137 images (pedestrian 1 and pedestrian 2) applying the ... mehr

A pedestrian detector is provided with the algorithm models of active shape (ASM), with the stages: training (PDM) and adjustment (ASM). With PDM, 50 landmarks are marked, and gray profiles are extracted in the silhouette of each pedestrian in 137 images (pedestrian 1 and pedestrian 2) applying the variation modes (PCA). The contribution of this work is the adjustment and detection of a pedestrian despite the variations. At the end, the results evaluated with leave one out in each 1 080 × 720 pixels image and with the mean square error (MSE) metric, a total average of 12.7 pixels is obtained in the error distance between the original landmarks and the estimated landmarks.... weniger

Thesaurusschlagwörter
Fußgänger

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
active shape models; marking; adjustment; shape variations

Sprache Dokument
Spanisch

Publikationsjahr
2020

Seitenangabe
S. 426-440

Zeitschriftentitel
CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27 (2020) 3

DOI
https://doi.org/10.30878/ces.v27n3a10

ISSN
2395-8782

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.