SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(1.393Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71214-9

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Testing financial time series for autocorrelation: Robust Tests

Autocorrelación en series de tiempo financieras: pruebas robustas
[journal article]

Muriel Torrero, Nelson Omar

Abstract

Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic distribution is found to be null and the... view more

Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic distribution is found to be null and their small sample properties are examined via Monte Carlo. The power of the tests is studied under the MA and GARCH-in-mean alternatives. The tests exhibit an appropriate empirical size and are seen to be more powerful than a robust Box-Pierce to the selected alternatives. Real data on daily stock returns and exchange rates is used to illustrate the tests.... view less


Se estudian dos estadísticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que pueden utilizarse para comprobar que series de tiempo heterocedásticas son serialmente incorreladas sin suponer independencia o normalidad. Se encuentra que su distribución a... view more

Se estudian dos estadísticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que pueden utilizarse para comprobar que series de tiempo heterocedásticas son serialmente incorreladas sin suponer independencia o normalidad. Se encuentra que su distribución asintótica es nula y se examinan sus propiedades de muestras pequeñas usando Monte Carlo. El poder de las pruebas se estudia para alternativas MA y GARCH en la media. Las pruebas exhiben un tamaño muestral apropiado y se comprueba que son más poderosas que la prueba robusta de Box-Pierce para alternativas selectas. Ilustramos las pruebas usando datos diarios de retornos financieros y de tipos de cambio.... view less

Keywords
statistics; economy; correlation

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods
Basic Research, General Concepts and History of Economics

Free Keywords
nonlinear dependence; sample autocorrelation; portmanteau statistics; robust tests

Document language
English

Publication Year
2020

Page/Pages
p. 376-391

Journal
CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27 (2020) 3

DOI
https://doi.org/10.30878/ces.v27n3a6

ISSN
2395-8782

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0

With the permission of the rights owner, this publication is under open access due to a (DFG-/German Research Foundation-funded) national or Alliance license.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.