SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.393 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-71214-9

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Testing financial time series for autocorrelation: Robust Tests

Autocorrelación en series de tiempo financieras: pruebas robustas
[Zeitschriftenartikel]

Muriel Torrero, Nelson Omar

Abstract

Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic distribution is found to be null and the... mehr

Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic distribution is found to be null and their small sample properties are examined via Monte Carlo. The power of the tests is studied under the MA and GARCH-in-mean alternatives. The tests exhibit an appropriate empirical size and are seen to be more powerful than a robust Box-Pierce to the selected alternatives. Real data on daily stock returns and exchange rates is used to illustrate the tests.... weniger


Se estudian dos estadísticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que pueden utilizarse para comprobar que series de tiempo heterocedásticas son serialmente incorreladas sin suponer independencia o normalidad. Se encuentra que su distribución a... mehr

Se estudian dos estadísticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que pueden utilizarse para comprobar que series de tiempo heterocedásticas son serialmente incorreladas sin suponer independencia o normalidad. Se encuentra que su distribución asintótica es nula y se examinan sus propiedades de muestras pequeñas usando Monte Carlo. El poder de las pruebas se estudia para alternativas MA y GARCH en la media. Las pruebas exhiben un tamaño muestral apropiado y se comprueba que son más poderosas que la prueba robusta de Box-Pierce para alternativas selectas. Ilustramos las pruebas usando datos diarios de retornos financieros y de tipos de cambio.... weniger

Thesaurusschlagwörter
Statistik; Wirtschaft; Korrelation

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften

Freie Schlagwörter
nonlinear dependence; sample autocorrelation; portmanteau statistics; robust tests

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 376-391

Zeitschriftentitel
CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27 (2020) 3

DOI
https://doi.org/10.30878/ces.v27n3a6

ISSN
2395-8782

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.