![]()
Volltext herunterladen
(238.3 KB)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-70719-0
Export für Ihre Literaturverwaltung
Concept Embedding for Information Retrieval
[Konferenzbeitrag]
Abstract Concepts are used to solve the term-mismatch problem. However, we need an effective similarity measure between concepts. Word embedding presents a promising solution. We present in this study three approaches to build concepts vectors based on words vectors. We use a vector-based measure to estimate... mehr
Concepts are used to solve the term-mismatch problem. However, we need an effective similarity measure between concepts. Word embedding presents a promising solution. We present in this study three approaches to build concepts vectors based on words vectors. We use a vector-based measure to estimate inter-concepts similarity. Our experiments show promising results. Furthermore, words and concepts become comparable. This could be used to improve conceptual indexing process.... weniger
Thesaurusschlagwörter
information retrieval; Indexierung
Klassifikation
Informationswissenschaft
Freie Schlagwörter
Computation and Language; Machine Learning
Titel Sammelwerk, Herausgeber- oder Konferenzband
Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018 ; Proceedings
Herausgeber
Pasi, Gabriella; Piwowarski, Benjamin; Azzopardi, Leif; Hanbury, Allan
Konferenz
40. European Conference on IR Research (ECIR). Grenoble, 2018
Sprache Dokument
Englisch
Publikationsjahr
2018
Verlag
Springer International Publishing
Erscheinungsort
Cham
Seitenangabe
S. 563-569
Schriftenreihe
Lecture Notes in Computer Science (LNCS), 10772
DOI
https://doi.org/10.1007/978-3-319-76941-7_45
ISSN
1611-3349
ISBN
978-3-319-76941-7
Status
Postprint; begutachtet (peer reviewed)
Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung