SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/mac.v8i3.3163

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Open-Source’s Inspirations for Computational Social Science: Lessons from a Failed Analysis

[journal article]

Poor, Nathaniel

Abstract

The questions we can ask currently, building on decades of research, call for advanced methods and understanding. We now have large, complex data sets that require more than complex statistical analysis to yield human answers. Yet as some researchers have pointed out, we also have challenges, especi... view more

The questions we can ask currently, building on decades of research, call for advanced methods and understanding. We now have large, complex data sets that require more than complex statistical analysis to yield human answers. Yet as some researchers have pointed out, we also have challenges, especially in computational social science. In a recent project I faced several such challenges and eventually realized that the relevant issues were familiar to users of free and open-source software. I needed a team with diverse skills and knowledge to tackle methods, theories, and topics. We needed to iterate over the entire project: from the initial theories to the data to the methods to the results. We had to understand how to work when some data was freely available but other data that might benefit the research was not. More broadly, computational social scientists may need creative solutions to slippery problems, such as restrictions imposed by terms of service for sites from which we wish to gather data. Are these terms legal, are they enforced, or do our institutional review boards care? Lastly - perhaps most importantly and dauntingly - we may need to challenge laws relating to digital data and access, although so far this conflict has been rare. Can we succeed as open-source advocates have?... view less

Classification
Research Design
Interactive, electronic Media

Free Keywords
Reddit; computational social science; fandom; games; online community; open source

Document language
English

Publication Year
2020

Page/Pages
p. 231-238

Journal
Media and Communication, 8 (2020) 3

Issue topic
Computational Approaches to Media Entertainment Research

ISSN
2183-2439

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.