SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-ds-108913

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Machine Learning basierte Response Style Identifikation: eine simulations-statistische Pilotstudie

Machine Learning based response style identification: a simulation-statistical pilot study
[Arbeitspapier]

Krause, Thomas

Körperschaftlicher Herausgeber
Universität Stuttgart, Fak. 10 Wirtschafts- und Sozialwissenschaften, Institut für Sozialwissenschaften

Abstract

Response Styles stellen eine Herausforderung für die empirische Surveyforschung dar. Antwortverhalten, welches nicht mit dem Inhalt der Frage assoziiert ist, kann nicht nur Anteils- und Durchschnittswerte beeinflussen, sondern auch modellbasierte Parameterschätzung verzerren. In dieser Pilotstudie s... mehr

Response Styles stellen eine Herausforderung für die empirische Surveyforschung dar. Antwortverhalten, welches nicht mit dem Inhalt der Frage assoziiert ist, kann nicht nur Anteils- und Durchschnittswerte beeinflussen, sondern auch modellbasierte Parameterschätzung verzerren. In dieser Pilotstudie soll der Frage nachgegangen werden, ob sich über Machine Learning Verfahren ein empirisch basierter Ansatz zu einheitlichen Identifikation von den gängigsten Response Style Mustern konstruieren lässt. Dies soll aufwändige Kontrollverfahren, welche jeweils nur einzelne Muster finden können oder mit erheblichem Mehraufwand verbunden sind, ersetzen und somit eine universellere und praxistauglichere Option zu bisherigen Ansätzen darstellen. Der hier dargelegte Ansatz basiert auf der Kalibrierung des ML-Verfahrens anhand von synthetisierten Daten, welche der formalen Definition von Response Styles (RS) entsprechen und einem Anteil von empirischen Daten (European Social Survey), welche nicht von RS betroffen sind. Das hierauf trainierte Modell kann auf empirisch erhobene Daten angewendet werden, um RS-Muster in Survey-Daten zuverlässig entdecken und bearbeiten zu können. Die Ergebnisse der Studie legen mit Fehlerklassifikationsraten von 0.3 bis 3.5 % den ML-Ansatz als eine vielversprechende Alternative zu bisherigen Verfahren nahe.... weniger

Thesaurusschlagwörter
Umfrageforschung; Methode; Daten; European Social Survey; Datenqualität; Antwortverhalten; Datenaufbereitung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Response Style; Response Set; Machine Learning; Random Forest; Survey

Sprache Dokument
Deutsch

Publikationsjahr
2020

Erscheinungsort
Stuttgart

Seitenangabe
27 S.

Schriftenreihe
Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart -SISS-, 47

DOI
https://doi.org/10.18419/opus-10874

ISSN
2199-7780

Status
Veröffentlichungsversion; begutachtet

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.