SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(825.4Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-68409-3

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Bias in Online Freelance Marketplaces: Evidence from TaskRabbit and Fiverr

[conference paper]

Hannák, Anikó
Wagner, Claudia
Garcia, David
Mislove, Alan
Strohmaier, Markus
Wilson, Christo

Corporate Editor
Association for Computing Machinery (ACM)

Abstract

Online freelancing marketplaces have grown quickly in recent years. In theory, these sites offer workers the ability to earn money without the obligations and potential social biases associated with traditional employment frameworks. In this paper, we study whether two prominent online freelance mar... view more

Online freelancing marketplaces have grown quickly in recent years. In theory, these sites offer workers the ability to earn money without the obligations and potential social biases associated with traditional employment frameworks. In this paper, we study whether two prominent online freelance marketplaces - TaskRabbit and Fiverr - are impacted by racial and gender bias. From these two platforms, we collect 13,500 worker profiles and gather information about workers' gender, race, customer reviews, ratings, and positions in search rankings. In both marketplaces, we find evidence of bias: we find that gender and race are significantly correlated with worker evaluations, which could harm the employment opportunities afforded to the workers. We hope that our study fuels more research on the presence and implications of discrimination in online environments.... view less

Keywords
employment service; service; digitalization; labor supply; job demand; profession; Internet; prejudice; gender-specific factors; racism; discrimination

Classification
Labor Market Research
Interactive, electronic Media

Collection Title
CSCW'17: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing

Conference
20. ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, OR, 2017

Document language
English

Publication Year
2017

City
New York, NY

Page/Pages
p. 1914-1933

DOI
https://doi.org/10.1145/2998181.2998327

ISBN
978-1-4503-4335-0

Status
Published Version; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.