SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.863 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12759/hsr.45.2020.3.288-313

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Potential and Limits of Automated Classification of Big Data: A Case Study

Potentiale und Grenzen der automatischen Klassifikation von Big Data: Eine Fallstudie
[Zeitschriftenartikel]

Weichbold, Martin
Seymer, Alexander
Aschauer, Wolfgang
Herdin, Thomas

Abstract

This case study highlights the potentials and limits of big-data analyses of media sources compared to conventional, quantitative content analysis. In an FFG-funded multidisciplinary project in Austria (based on the KIRAS security research program), the software tool WebLyzard was used for an automa... mehr

This case study highlights the potentials and limits of big-data analyses of media sources compared to conventional, quantitative content analysis. In an FFG-funded multidisciplinary project in Austria (based on the KIRAS security research program), the software tool WebLyzard was used for an automated analysis of online news and social media sources (comments on articles, Facebook postings, and Twitter statements) in order to analyze the media representation of pressing societal issues and citizens’ perceptions of security. Frequency and sentiment analyses were carried out by two independent observers in parallel to the automated WebLyzard results. Specific articles on selected key topics like technology or Muslims in two major online newspapers in Austria (Der Standard and Kronen Zeitung) were counted, as were user comments, and both were evaluated according to different sentiment categories. The results indicate various weaknesses of the software leading to misinterpretations, and the automated analyses yield substantially different results compared to the sentiment analysis carried out by the two raters, especially for cynical or irrelevant statements. From a social-sciences methodological perspective, the results clearly show that methodology in our discipline should promote theory-based research, should counteract the attraction of superficial analyses of complex social issues, and should emphasize not only the potentials but also the dangers and risks associated with big data.... weniger

Thesaurusschlagwörter
Inhaltsanalyse; Methodenvergleich; Software; Österreich; Sicherheitsempfinden; Soziale Medien; Automatisierung; Fallstudie; innere Sicherheit; Bevölkerung; Online-Medien; Einstellung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
interaktive, elektronische Medien

Freie Schlagwörter
Security perceptions; social media; big data; evaluation study; automated analysis

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 288-313

Zeitschriftentitel
Historical Social Research, 45 (2020) 3

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.