SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(3.318 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12759/hsr.45.2020.3.244-269

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Digital Data, Administrative Data, and Survey Compared: Updating the Classical Toolbox for Assessing Data Quality of Big Data, Exemplified by the Generation of Corruption Data

Digitale Daten, Verwaltungsdaten und standardisierte Befragungen im Vergleich. Update des klassischen Werkzeugkastens zur Ermittlung der Datenqualität von Massendaten, am Beispiel von Korruptionsdaten
[Zeitschriftenartikel]

Graeff, Peter
Baur, Nina

Abstract

In the digital age, new data types have become available that can, potentially, be used in social science research. Besides data that were originally created for scientific purposes (research-elicited data), administrative mass data (traditional-type big data) and data from digital devices (new-type... mehr

In the digital age, new data types have become available that can, potentially, be used in social science research. Besides data that were originally created for scientific purposes (research-elicited data), administrative mass data (traditional-type big data) and data from digital devices (new-type big data) have become more and more relevant for research processes. Both data types can be subsumed under the term “big data.” In this paper, we scrutinize the quality of administrative mass data on corruption in contrast to research-elicited data (e.g., survey data). Since data quality is crucial for the measurement of a social phenomenon such as corruption, we pose the question of how a social phenomenon can be measured by means of data from these different sources. As a first step, we refer to the so-called Bick-Mueller-Model. It was developed in the 1980s for observing the special features and particularities of administrative mass data (traditional-type big data). We contrast this model with the so-called Error-Approach that is typically applied in survey research. In order to account for new trends in data generation and application, we show the progress that has been made since Bick and Mueller introduced their model and discuss new features of digitalism and new technologies. We conclude that the features of the so-called Bick-Mueller are useful for tackling the particularities of administrative data and also – to some degree – new-type big data. The “error” perspective that is inherent both in the classical survey research and in the so-called Bick-Mueller model also applies to new-type big data when it comes to assessing their quality. Moreover, it is possible that the data from these different sources can complement each other. For this, researchers must be aware of the fact that neither data source actually measures corruption directly. For answering specific research questions, it is crucial to consider the advantages and disadvantages of using specific data types.... weniger

Thesaurusschlagwörter
Digitalisierung; Daten; Datengewinnung; Datenqualität; Messung; Korruption; Umfrageforschung; Methodologie; Methodenvergleich; Modellvergleich

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
data quality; measurement; big data; mass data; process-generated data; process-produced data; digital data; survey data; digital methods; computational social sciences; survey methodology; total survey error; corruption

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 244-269

Zeitschriftentitel
Historical Social Research, 45 (2020) 3

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.