SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.039 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12759/hsr.45.2020.3.209-243

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Quality of Big Data: Development, Problems, and Possibilities of Use of Process-Generated Data in the Digital Age

Die Qualität von Big Data: Entwicklung, Probleme und Chancen der Nutzung von prozessgenerierten Daten im digitalen Zeitalter
[Zeitschriftenartikel]

Baur, Nina
Graeff, Peter
Braunisch, Lilli
Schweia, Malte

Abstract

The paper introduces the HSR Forum on digital data by discussing what big data are. The authors show that big data are not a new type of social science data but actually one of the oldest forms of social science data. In addition, big data are not necessarily digital data. Regardless, current method... mehr

The paper introduces the HSR Forum on digital data by discussing what big data are. The authors show that big data are not a new type of social science data but actually one of the oldest forms of social science data. In addition, big data are not necessarily digital data. Regardless, current methodological debates often assume that “big data” are “digital data.” The authors thus also show that digital data have a big drawback concerning data quality because they do not cover the whole population – due to so-called digital divides, not everybody is on the internet, and who is on the internet, is socially structured. The result is a selection bias. Based on this analysis, the paper concludes that big data and digital data are data like any other type of data – they have both advantages and specific blind spots. So rather than glorifying or demonising them, it seems much more sensible to discuss which specific advantages and drawbacks they have as well as when and how they are better suited for answering specific research questions and when and how other types of data are better suited – these are the questions that are addressed in this HSR Forum.... weniger

Thesaurusschlagwörter
Datengewinnung; Datenqualität; Digitale Spaltung; Internet; Sozialstruktur; historische Sozialforschung; Methodologie; empirische Sozialforschung; Digitalisierung; historische Entwicklung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
big data; mass data; process-generated data; process-produced data; digital data; digital methods; computational social sciences; historical sociology; survey methodology; corpus linguistics; social science methodology; data quality; social research

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 209-243

Zeitschriftentitel
Historical Social Research, 45 (2020) 3

ISSN
0172-6404

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.