Show simple item record

[journal article]

dc.contributor.authorWeber, Hannesde
dc.date.accessioned2020-04-17T07:45:59Z
dc.date.available2020-04-17T07:45:59Z
dc.date.issued2020de
dc.identifier.issn1869-8999de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/67290
dc.description.abstractFor several decades, demographic forecasts had predicted that the majority of Germany’s cities and rural areas would experience population decline in the early 21st century. Instead, recent trends show a growing population size in three out of every four German districts. As a result, there are currently severe shortages of housing and childcare in regions that were projected to decline but have instead grown in recent years. Other regions, by contrast, continue to lose young people in particular. Most of these differences between regions stem from within-country as well as international migration. An important question for both regional demographic research as well as local policy-makers is thus how well net migration rates in cities and rural districts can be predicted several years into the future. In this study, we develop models that predict migration (both within-country as well as international migration) at the level of municipalities for two demographic groups, namely young people aged 18 to 24 years, and families (people aged 30 to 49 years and underage children). We collect data on economic, demographic and other characteristics such as distances to large cities or universities for around 3,000 German municipalities (Gemeinden). The model is trained on a subset of these data from the period 2005-2009 and predicts net migration rates among young people on an unseen test dataset in the future (i.e. for the period 2011-2015). The results show that the model can predict future net migration by young people aged 18 to 24 years reasonably well (R² > 0.5), although there were quite significant changes during the period under study, for example refugee immigration to Germany. Family migration, on the other hand, cannot be predicted equally well (R² = 0.25). Some important lessons emerge concerning the predictability of regional and international migration and the usefulness of demographic forecasts for local policy-makers.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.titleHow Well Can the Migration Component of Regional Population Change be Predicted? A Machine Learning Approach Applied to German Municipalitiesde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalComparative Population Studies - Zeitschrift für Bevölkerungswissenschaft
dc.source.volume45de
dc.publisher.countryDEU
dc.subject.classozBevölkerungde
dc.subject.classozPopulation Studies, Sociology of Populationen
dc.subject.classozMigrationde
dc.subject.classozMigration, Sociology of Migrationen
dc.subject.thesozBevölkerungsstrukturde
dc.subject.thesozdemographical structureen
dc.subject.thesozMigrationde
dc.subject.thesozmigrationen
dc.subject.thesozBinnenwanderungde
dc.subject.thesozinternal migrationen
dc.subject.thesozBevölkerungsentwicklungde
dc.subject.thesozpopulation developmenten
dc.subject.thesozWachstumde
dc.subject.thesozgrowthen
dc.subject.thesozregionaler Unterschiedde
dc.subject.thesozregional differenceen
dc.subject.thesozTrendde
dc.subject.thesoztrenden
dc.subject.thesozBundesrepublik Deutschlandde
dc.subject.thesozFederal Republic of Germanyen
dc.rights.licenceCreative Commons - Namensnennung, Weitergabe unter gleichen Bedingungen 4.0de
dc.rights.licenceCreative Commons - Attribution-ShareAlike 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10035357
internal.identifier.thesoz10034515
internal.identifier.thesoz10039545
internal.identifier.thesoz10039081
internal.identifier.thesoz10039142
internal.identifier.thesoz10056402
internal.identifier.thesoz10042413
internal.identifier.thesoz10037571
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo143-178de
internal.identifier.classoz10303
internal.identifier.classoz10304
internal.identifier.journal60
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.12765/CPoS-2020-08ende
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence24
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record