SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(139.9 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-66793-3

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

German Ageing Survey (DEAS): User Manual SUF DEAS2017_Regionaldaten_Infas360, Version 1.0

[Verzeichnis, Liste, Dokumentation]

Köhler, Katharina
Engstler, Heribert
Schwichtenberg-Hilmert, Beate

Körperschaftlicher Herausgeber
Deutsches Zentrum für Altersfragen

Abstract

Based on respondents’ addresses of residence the Institute for Applied Social Sciences (infas360) delivered a selection of regional context indicators mainly at the zip code level. The anonymity of the survey participants is guaranteed. Any address information has been removed. Only the resulting co... mehr

Based on respondents’ addresses of residence the Institute for Applied Social Sciences (infas360) delivered a selection of regional context indicators mainly at the zip code level. The anonymity of the survey participants is guaranteed. Any address information has been removed. Only the resulting context indicators can be matched to the survey data. The indicator system of infas360 provides a nationwide collection of microgeographical information on the basis of official and non-official data. These are available for the different levels of the postal-official classification system, e.g. the level of the five digits zip codes down to the level of buildings. Details are the company’s secret. The variables of the regional context data SUF DEAS2017 relate mostly to the postal codes of the delivery areas, occasionally to single municipality, settlement blocs or buildings. Which level is used can be seen in the description of the variables. In Germany the zip codes (PLZ) cannot be adapted into the official classification scheme. Cities often have multiple zip codes, small municipalities in rural areas occasionally share one. Relevant is the zip code, alternative the municipality, if it is too small to have an own one. This means: for municipalities with multiple zip codes the smallest geographical unit is the one with the same zip code. Vice versa for small municipalities in rural areas which share one zip code, the smallest geographical unit is the municipality. In the interests of simplification the geographical unit is characterised as the variable "PLZ". Only for participants whose addresses of residence can specifically be referenced, infas360 has developed geographic features. The geographic structural features relate mostly to the end of the years 2016 or 2017, delivered by infas360 in 2019. For better understanding and use most original variables have been recoded and labelled to derived ones in a summarized version. To ensure the anonymity of the respondents, all relative values have been rounded, e.g. to integers. Most of the structural features as described below are part of SUF DEAS2014 as well (see Lejeune & Engstler 2018). Newly added features are primarily variables on geographic distances of the respondents’ residence to central places, malls and physicians. There are similar structural features for SUF DEAS2002, 2008, 2011 and 2014 (see Engstler 2012a, 2012b; 2018; Engstler & Lejeune 2018).... weniger

Thesaurusschlagwörter
Bundesrepublik Deutschland; Bevölkerungsentwicklung; alter Mensch; Panel; Erwerbsbeteiligung; Alter; Befragung; Kaufkraft; Altersstruktur; Nationalität; Altern; Wohnverhältnisse; Pendler

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Gerontologie, Alterssoziologie

Freie Schlagwörter
DEAS, Deutscher Alterssurvey; Regionaldaten

Sprache Dokument
Englisch

Publikationsjahr
2020

Erscheinungsort
Berlin

Seitenangabe
24 S.

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz., Weitergabe unter gleichen Bedingungen 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.