SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12758/mda.2019.06

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Solidarity and Self-Interest: Using Mixture Modeling to Learn about Social Policy Preferences

[Zeitschriftenartikel]

Alemán, José
Woods, Dwayne

Abstract

This article addresses the problem of measuring social policy preferences in a valid and reliable way. Scholars have faced a number of challenges in measuring these preferences. First, it is not clear how exactly we should conceive of this domain. Second, the literature presents contradictory findin... mehr

This article addresses the problem of measuring social policy preferences in a valid and reliable way. Scholars have faced a number of challenges in measuring these preferences. First, it is not clear how exactly we should conceive of this domain. Second, the literature presents contradictory findings regarding the effect of contextual factors on policy preferences. Third, abstract preferences regarding the welfare state and information about its performance can affect each other, complicating the attempt to distinguish between the two. Finally, latent manifestations of these preferences might not be equivalent across countries. We develop an approach that validly and reliably measures attitudes about the role of government in addressing inequalities in the market distribution of resources. Mixture modeling and in particular latent class analysis enables us to take advantage of information for multiple countries and survey questions while doing justice to the characteristics of the survey data. Using three waves of the International Social Survey Programme’s module on social inequality, we find that preferences towards the market and the role of government in the economy form four distinct clusters of individuals that we refer to as “moderate altruists”, “moderate egoists”, “extreme altruists”, and “extreme egoists”. These clusters tend to be homogenous with respect to both abstract notions of the role the government should play in the economy as well as about evaluations of actual performance. The exceptions are the last two survey waves, for which we find that one class exhibits a mixed profile of individuals: solidaristic with respect to some indicators, but self-interested with respect to others.... weniger

Thesaurusschlagwörter
Messung; Sozialpolitik; Präferenz; soziale Ungleichheit; Einstellungsforschung; Datengewinnung; Datenqualität; ISSP; Umfrageforschung; internationaler Vergleich

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
solidarism; self interest; social policy preferences; latent class analysis; mixture modelling

Sprache Dokument
Englisch

Publikationsjahr
2020

Seitenangabe
S. 61-90

Zeitschriftentitel
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 14 (2020) 1

ISSN
2190-4936

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.