SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.1177/0003122417717901

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Costs of Simplicity: Why Multilevel Models May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls

[Zeitschriftenartikel]

Heisig, Jan Paul
Schaeffer, Merlin
Giesecke, Johannes

Abstract

Context effects, where a characteristic of an upper-level unit or cluster (e.g., a country) affects outcomes and relationships at a lower level (e.g., that of the individual), are a primary object of sociological inquiry. In recent years, sociologists have increasingly analyzed such effects using qu... mehr

Context effects, where a characteristic of an upper-level unit or cluster (e.g., a country) affects outcomes and relationships at a lower level (e.g., that of the individual), are a primary object of sociological inquiry. In recent years, sociologists have increasingly analyzed such effects using quantitative multilevel modeling. Our review of multilevel studies in leading sociology journals shows that most assume the effects of lower-level control variables to be invariant across clusters, an assumption that is often implausible. Comparing mixed-effects (random-intercept and slope) models, cluster-robust pooled OLS, and two-step approaches, we find that erroneously assuming invariant coefficients reduces the precision of estimated context effects. Semi-formal reasoning and Monte Carlo simulations indicate that loss of precision is largest when there is pronounced cross-cluster heterogeneity in the magnitude of coefficients, when there are marked compositional differences among clusters, and when the number of clusters is small. Although these findings suggest that practitioners should fit more flexible models, illustrative analyses of European Social Survey data indicate that maximally flexible mixed-effects models do not perform well in real-life settings. We discuss the need to balance parsimony and flexibility, and we demonstrate the encouraging performance of one prominent approach for reducing model complexity.... weniger

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
cluster-robust standard errors; comparative research; context effects; hierarchical data; multilevel modeling

Sprache Dokument
Englisch

Publikationsjahr
2017

Seitenangabe
S. 796-827

Zeitschriftentitel
American Sociological Review, 82 (2017) 4

Handle
https://hdl.handle.net/10419/182102

ISSN
1939-8271

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.