SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18148/srm/2019.v13i2.7262

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Can Nonprobability Samples be Used for Social Science Research? A cautionary tale

[Zeitschriftenartikel]

Zack, Elizabeth S.
Kennedy, John
Long, J. Scott

Abstract

Survey researchers and social scientists are trying to understand the appropriate use of nonprobability samples as substitutes for probability samples in social science research. While cognizant of the challenges presented by nonprobability samples, scholars increasingly rely on these samples due to... mehr

Survey researchers and social scientists are trying to understand the appropriate use of nonprobability samples as substitutes for probability samples in social science research. While cognizant of the challenges presented by nonprobability samples, scholars increasingly rely on these samples due to their low cost and speed of data collection. This paper contributes to the growing literature on the appropriate use of nonprobability samples by comparing two online non-probability samples, Amazon's Mechanical Turk (MTurk) and a Qualtrics Panel, with a gold standard nationally representative probability sample, the GSS. Most research in this area focuses on determining the best techniques to improve point estimates from nonprobability samples, often using gold standard surveys or census data to determine the accuracy of the point estimates. This paper differs from that line of research in that we examine how probability and nonprobability samples differ when used in multivariate analysis, the research technique used by many social scientists. Additionally, we examine whether restricting each sample to a population well-represented in MTurk (Americans age 45 and under) improves MTurk’s estimates. We find that, while Qualtrics and MTurk differ somewhat from the GSS, Qualtrics outperforms MTurk in both univariate and multivariate analysis. Further, restricting the samples substantially improves MTurk’s estimates, almost closing the gap with Qualtrics. With both Qualtrics and MTurk, we find a risk of false positives. Our findings suggest that these online nonprobability samples may sometimes be 'fit for purpose,' but should be used with caution.... weniger

Thesaurusschlagwörter
Umfrageforschung; Sozialwissenschaft; Datengewinnung; Stichprobe; Wahrscheinlichkeit; Datenqualität; multivariate Analyse; Online-Befragung

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Nonprobability Samples; Online Panels; MTurk; GSS

Sprache Dokument
Englisch

Publikationsjahr
2019

Seitenangabe
S. 215-227

Zeitschriftentitel
Survey Research Methods, 13 (2019) 2

ISSN
1864-3361

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.